

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility

Overview

Pete Beckman, Director Argonne Leadership Computing Facility March 4, 2008

Over 20 years of Advanced Systems for DOE and Others

- ACRF period [1983-1992]
 - DOE's founding ACRF
 - Explored many parallel architectures, developed programming models and tools, trained >1000 people
- **HPCRC** period [1992-1999]
 - Production-oriented parallel computing for Grand Challenges in addition to Computer Science.
 - Fielded 1st IBM SP in DOE

- TeraGrid [2001-present]
 - Overall Project Lead
 - Defining, deploying and operating the integrated national cyberinfrastructure for NSF
 - 9 sites, 22 systems, 200TF
- LCRC [2003-present]
 - Lab-wide production supercomputer service
 - All research divisions, 56 projects, 380 users
- BlueGene Evaluation [2005-present]
 - Founded BlueGene Consortium with IBM
 - 67 institutions, >260 members
 - Applications Workshop Series
 - Systems Software Collaborations

ALCF Timeline

2004

- Formed of the Blue Gene Consortium with IBM
- DOE-SC selected the ORNL, ANL and PNNL teams for Leadership Computing Facility award

2005

Installed 5 teraflops Blue Gene/L for evaluation

2006

- Began production support of 6 INCITE projects, with BGW
- Joined IBM and LLNL to design and develop next Blue Genes
- "Lehman" Peer Review of ALCF campaign plans

2007

- Increased to 9 INCITE projects; continued development projects
- Install 100 teraflops Blue Gene/P system

2008

- Begin support of 20 INCITE projects on Blue Gene/P
- Add 500T teraflops Blue Gene/P system

Mission and Vision for the ALCF

Our Mission

Provide the computational science community with a world leading computing capability dedicated to breakthrough science and engineering.

Our Vision

A world class center for computation driven scientific discovery that has:

- outstandingly talented people,
- the best collaborations with computer science and applied mathematics,
- the most capable and interesting computers and,
- a true spirit of adventure.

See http://www.alcf.anl.gov/ for additional information

Blue Gene DNA

Low power design massive parallelism

The leader in Green Computing

- System on a Chip (SoC)
 - Improves Price / Performance
 - Reduces system complexity & power
- Custom designed ASIC
 - Reducing overall part count, reducing errors
 - Permits tweaking CPU design to reduce soft errors
- Dense packaging
- Fast communication network(s)
- Sophisticated RAS (reliability, availability, and serviceability)
- Dynamic software provisioning and configuration

DOE / IBM Partnership for Petascale Architectures

DOE NNSA/LLNL, DOE SC/ANL and IBM/Rochester/Watson

Using TAU on IBM BGP The Open Source community is here to help...

Choose measurement configuration

% Is /soft/apps/tau/tau_latest/bgp/lib/Makefile.*

Makefile.tau-mpi-pdt

Makefile.tau-mpi-pdt-trace

Makefile.tau-callpath-mpi-pdt

Makefile.tau-callpath-mpi-compensate-pdt

Makefile.tau-depthlimit-mpi-pdt

Makefile.tau-mpi-compensate-pdt

Makefile.tau-multiplecounters-mpi-papi-pdt

Makefile.tau-multiplecounters-mpi-papi-pdt-trace

Makefile.tau-multiplecounters-papi-pdt

Makefile.tau-multiplecounters-pthread-papi-pdt

Makefile.tau-pdt

Makefile.tau-phase-multiplecounters-mpi-compensate-papi-pdt

Makefile.tau-phase-multiplecounters-mpi-papi-pdt

Makefile.tau-pthread-pdt ...

% setenv TAU MAKEFILE /soft/apps/tau/tau-2.17/bgp/lib/Makefile.tau-mpi-pdt

% set path=(/soft/apps/tau/tau-2.17/ppc64/bin \$path) # Front-end binaries

- Replace mpixlf90_r with tau_f90.sh and compile your application
 - Use tau_cxx.sh and tau_cc.sh for C++ and C compilers respectively

TAU's ParaProf 3D Profile Browser: Matmult

Profiling FLASH3 on IBM BG/P

Sedov 2D Auto

- Initial test run did not include a load balanced problem
- Small problem: too little work for 1024 processor
- Proof of concept to validate porting of tools

Modeling of Protofibril Structures Provides Insight into Molecular Basis of Parkinson's Disease

Igor Tsigelny, PI, U. California - San Diego

- Parkinson's Disease is the 2nd most common adult neurological disease
- Increased aggregation of alphasynuclein protein is thought to lead to harmful pore-like structures in human membranes
- UCSD SDSC team used molecular modeling and molecular dynamics simulations in combination with biochemical and ultrastructural analysis to show that alpha-synuclein can lead to the formation of pore-like structures on membranes
- Used NAMD and MAPAS on Blue Gene/L at ALCF and SDSC

alpha-synuclein forming a dimer (above) and a completed pentamer (below) attached to a membrane

High-Resolution Protein Structure Prediction

David Baker, Srivatsan Raman, Univ. of Washington

- Proteins are the workhorse molecules of all biological systems
- ROSETTA uses a two-phase Monte Carlo algorithm to sample the extremely large space of possible structures to find the most favorable one
- Below: Electron density (black) was generated from phases determined from two starting models. The crystal structure (red) agrees very well with the phases determined from the Rosetta model.

ALCF - ISSF, TCS

Argonne Theory and Computing Sciences Building

A 200,000 sq ft creative space to do science, Coming Summer 2009